70. , , , , , , , , , , ,
Tungsten–Iron–Ruthenium Ternary Alloy Immobilized into the Inner Nickel Foam for High-Current-Density Water Oxidation.
69. Y. X. Pu, J. X. Liu*
Chinese J. Chem. Phys. 2024 , 37 (5), 573-581.
68. S. Li, L. Feng, H. W. Wang*, Y. Lin, Z. H. Sun, L. L. Xu, Y. X. Xu, X. Y. Liu, W. X. Li, S. Q. Wei, J. X. Liu*, J. L. Lu*
Atomically‒intimate assembly of dual metal‒oxide interfaces for tandem conversion of syngas to ethanol
67. Y. X. Pu, J. L. Chen, L. Feng, J. Z. Zhu, X. C. Jiang, W. X. Li, J. X. Liu*
The Nature of the Active Center for the Oxygen Reduction Reaction on Ag-Based Single-Atom Alloy Cluster
66. Chen-Yue Yuan, Li Feng, Xue-Tao Qin, Jin-Xun Liu*, Xin Li, Xiao-Chen Sun, Xiao-Xia Chang, Bing-Jun Xu, Wei-Xue Li, Ding Ma, Hao Dong, Yawen Zhang*.
Metal(II)-Sulfate Site Catalysts toward Low Overpotential Carbon Dioxide Electroreduction to Fuel Chemicals.
Angew. Chem. Int. Ed. 2024, e202405255.
65. Song, C.; Wang, Z.; Zhao, J.; Qin, X.; Peng, M.; Gao, Z.; Xu, M.; Xu, Y.; Yan, J.; Bi, Y.; Wang, M.; Chen, L.; Yin, Z.; Liu, X.*; Liu, J.-X.*; Ma, D*.
Photothermal conversion of CO2 into lower olefins at the interface of the K-promoted Ru/Fe3O4 catalyst.
Chem Catalysis. 2024, 4 (4), 100960.
64. Shu, W.; Li, J.; Liu, J.-X.; Zhu, C.; Wang, T.; Feng, L.; Ouyang, R.; Li, W.-X.*
Structure Sensitivity of Metal Catalysts Revealed by Interpretable Machine Learning and First-Principles Calculations.
J. Am. Chem. Soc. 2024, 146 (12), 8737-8745.
63. Chen, C.; Chen, J.-L.; Feng, L.; Hu, J.; Chai, X.; Liu, J.-X.*; Li, W.-X.*
Reactant-Induced Dynamic Stabilization of Highly Dispersed Pt Catalysts on Ceria Dictating the Reactivity of CO Oxidation.
ACS Catal. 2024, 14, 3504-3513.
62. Qin, X.; Xu, M.; Guan, J.; Feng, L.; Xu, Y.; Zheng, L.; Wang, M.; Zhao, J.-W.; Chen, J.-L.; Zhang, J.; Xie, J.; Yu, Z.; Zhang, R.; Li, X.; Liu, X.*; Liu, J.-X.*; Zheng, J.*; Ma, D.*
Direct conversion of CO and H2O to hydrocarbons at atmospheric pressure using a TiO2−x/Ni photothermal catalyst.
Nature Energy. 2024, 9 (2), 154-162.
61. Zhao, J.-W.; Wang, H.-Y.; Feng, L.; Zhu, J.-Z.; Liu, J.-X.*; Li, W.-X.*
Crystal-Phase Engineering in Heterogeneous Catalysis.
Chemical Reviews. 2024, 124 (1), 164-209.
60. Zhang, X.; Li, M.; Liu, X.; Li, A.; Deng, Y.; Peng, M.; Zhang, Y.; Vogt, C.; Monai, M.; Gao, J.; Qin, X.; Xu, Y.; Yu, Q.; Wang, M.; Wang, G.; Jiang, Z.; Han, X.; Brady, C.; Li, W.-X.; Zhou, W.; Liu, J.-X.*; Xu, B.; Weckhuysen, B.M.; Ma, D. An Integrated Carbon Dioxide Capture and Methanation Process.
CCS Chem. 2023, 0 (0), 1-10.
59. Peng, G.; Zhao, J.-W.; Wang, J.; Hoenig, E.; Wu, S.; Wang, M.; He, M.; Zhang, L.;Liu, J.-X.*; Liu, C.*.
Crystal Structures of Molybdenum Borides Dictate Electrocatalytic Ammonia Synthesis Efficiency.
Appl. Catal., B. 2023, 338, 123020.
58. Hu, L.; Zhu, J.; Duan, C.; Zhu, J.; Wang, J.; Wang, K.; Gu, Z.; Xi, Z.; Hao, J.; Chen, Y.; Ma, J.; Liu, J.-X.*; Ma, C.*.
Revealing the Pnma crystal structure and ion-transport mechanism of the Li3YCl6 solid electrolyte.
Cell Rep. Phys. Sci. 2023, 4 (6), 101428.
57. Liu, J.-X.#; Lu, S.; Ann, S.-B.; Linic, S.*, Mechanisms of Ethylene Epoxidation over Silver from Machine Learning-Accelerated First-Principles Modeling and Microkinetic Simulations.
ACS Catal. 2023, 13, 8955-8962.
56. Kimpel, T. F.; Liu, J.-X.; Chen, W.
Pestman, R.; Hensen, E. J. M., Pressure Dependence and Mechanism of Mn Promotion of Silica-Supported Co Catalyst in the Fischer-Tropsch Reaction.
55. Xu, M.; Qin, X.; Xu, Y.; Zhang, X.; Zheng, L.; Liu, J.-X.*; Wang, M.*; Liu, X.*; Ma, D.*
Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2−x/Ni catalysts.
Nat Commun. 2022, 13 (1), 6720.
54. Luo, J.; Liu, J.-X.; Li, W.-X.*
H2 Activation on Pristine and Substitutional ZnO(10-10) and Cr2O3(001) Surfaces by Density Functional Theory Calculations
J. Phys. Chem. C. 2022, 126, 9059-9068.
53. Chen, C., Jian, M.-Z.,Liu, J.-X.*, Li, W.-X.*
Understanding the effect of the exchange-correlation functionals on methane and ethane formation over ruthenium catalysts.
Chin. J. Chem. Phys. 2022, 35, 4
52. Zhao, H.#; Jiang, H.; Cheng, M.; Lin, Q.; lv, Y.; Xu, Y.; Xie, J.; Liu, J.-X.; Men, Z.*; Ma, D.*
Boron adsorption and its effect on stability and CO activation of χ-Fe5C2 catalyst: An ab initio DFT study
Appl. Catal. A: Gen. 2021, 607, 118382
51. Wang J.#; Liu J.*; Zhang B.; Gao J.; Liu G.; Cui X.; Liu J.-X*; Jiang L.* .
Amine-ligand Modulated Ruthenium Nanoclusters as a Superior Bi-functional Hydrogen Electrocatalyst in Alkaline Media
J. Mater. Chem. A. 2021, 9, 22934-22942
50. Jian M.#; Liu J.-X*; Li W.-X*,
Hydroxyl Improving the Activity, Selectivity and Stability of Supported Ni Single Atom for Selective Semi-Hydrogenation
Chem. Sci. 2021, 12, 10290-10298
49. Wang S.#; Li Z.; Yang M.; Li Y.; Li R.; Yu C.; Wang Y.; Jiang Y.; Li T.; Liu J.-X*; Zhang H.*; Zhao Z.; Xu C.; Jiang G*,
Achieving anti-sintering of supported platinum nanoparticles using a thermal management strategy
Sci. China Mater. 2021, 64, 1930-1938
48. Su H.-Y.#; Sun K.*; Liu J.-X.; Ma X.; Jian M.; Sun C.; Xu Y.; Yin Y.; Li W.-X*,
Bridge Sulfur Vacancies in MoS2 Catalyst for Reverse Water Gas Shift: A First-Principles Study
Appl. Surf. Sci. 2021, 561, 149925
47. Zhang, Y. S.#; Liu, J.-X.#*; Qian, K.; Jia, A.; Li, D.; Shi, L.; Hu, J.; Zhu, J.; Huang, W.*,
Structure–Sensitivity of Au–TiO2 Strong Metal–Support Interaction.
Angew. Chem. Int. Ed. 2021, 335, 135665.
46. Li, S.; Cao, R.; Xu, M.; Deng, Y.; Lin, L.; Yao, S.; Liang, X.; Peng, M.; Gao, Z.; Ge, Y.; Liu, J.-X.*; Li, W.-X.; Zhou, W.*; Ma, D.*.
Atomically Dispersed Ir/Α-MoC Catalyst with High Metal Loading and Thermal Stability for Water-Promoted Hydrogenation Reaction.
Natl. Sci. Rev. 2021, 9 (1), nwab026.
45.Lin, H.#; Liu, J.-X.#; Fan, H.*; Li, W.-X.*.
Crystallographic and Morphological Sensitivity of N2 Activation over Ruthenium.
Chin. J. Chem. Phys.2020, 34, 263-272
44.Zhao, H.#; Liu, J.-X#.; Yang, C.#; Yao, S.; Su, H.-Y.; Gao, Z.; Dong, M.; Wang, J.; Hou, Y.*; Li, W.-X.*, Ma, D.*.
Synthesis of Iron-Carbide Nanoparticles: Identification of the Active Phase and Mechanism of Fe-Based Fischer–Tropsch Synthesis.
43.Su, H.-Y.; Yu, C.; Liu, J.-X.; Zhao, Y.; Ma, X.; Luo, J.; Sun, C.; Li, W.-X.*; Sun, K.*.
CO Activation and Methanation Mechanism on Hexagonal Close-Packed Co Catalysts: Effect of Functionals, Carbon Deposition and Surface Structure.
Catal. Sci. Technol. 2020, 10, 3387-3398.
42.Lin, H.#; Liu, J.-X.#; Fan, H.-J.*; Li, W.-X.*.
Morphology Evolution of Fcc and Hcp Cobalt Induced by a Co Atmosphere from Ab Initio Thermodynamics.
J. Phys. Chem. C. 2020, 124, 23200-23209.
41.Lin, H.#; Liu, J.-X.#; Fan, H.*; Li, W.-X.*,
Compensation between Surface Energy and Hcp/Fcc Phase Energy of Late Transition Metals from First-Principles Calculations.
J. Phys. Chem. C. 2020, 124, 11005-11014.
40.Su, Y.-Q.; Zhang, L.; Wang, Y.; Liu, J.-X.; Muravev, V.; Alexopoulos, K.; Filot, I. A.; Vlachos, D. G.*; Hensen, E. J.*,
Stability of Heterogeneous Single-Atom Catalysts: A Scaling Law Mapping Thermodynamics to Kinetics.
NPJ Comput. Mater. 2020, 6, 1-7.
39.Zijlstra, B.#; Zhang, X.#; Liu, J.-X.#; Filot, I. A. W.; Zhou, Z.; Sun, S.; Hensen, E. J. M.*,
First-Principles Microkinetics Simulations of Electrochemical Reduction of CO2 over Cu Catalysts.
Electrochim. Acta. 2020, 335, 135665.
38.Lin, H.#; Liu, J.-X.#; Fan, H.*; Li, W.-X.*,
Compensation between Surface Energy and hcp/fcc Phase Energy of Late Transition Metals from First-Principles Calculations.
J. Phys. Chem. C. 2020, 124, 11005-11014.