2020-至今


2020    2021   2022   2023  2024  2025 ……


2025

75. Jiang, X-C.; Zhao, J-W.;  Liu, J.-X.*.

      Mechanistic insights and rational catalyst design in NOx electroreduction.

Nanoscale2025.





74. Xie, S-M.; Tian, S-H.; Yang, J-L.; Wang, N.*; Wan, Q-X.; Wang, M-L.; Liu, J.-X.; Zhou, P-F.; Sui, K-Y.; Li, X-Y.*; Ma, D.; Zhao, X-S.

Synergizing Mg Single Atoms and Ru Nanoclusters for Boosting the  Ammonia Borane Hydrolysis to Produce Hydrogen.

Angew. Chem. Int. Ed. 2025, 64, e202424316.




 73. Hu, J-Y.; Yang, J-Y.; Hu, S-L.;  Liu, J.-X.; Li, W-X.*.

     Interpretable Machine Learning-Assisted Development of Catalysis Theory.

     Sci. China Chem. 2025. 



72. Chai, X-T.; Li, M.; Feng, L.; Liu, J.-X.; Li, W-X.*.

Unlocking the Potential of Metal Complexes in Supported Catalysts: Enhancing Activity and Stability for the Water-Gas Shift Reaction.

ACS Catal. 2025, 15, 9402-9416.




71. Li, F.; Liu, J.-X.*.

Identification of Active Sites for Reverse Water-Gas Shift Reactions on Pt/TiO2 Cluster Catalysts.

Precision Chemistry. 2025.



2024

70. Fan, X-Y.; Zhang, C-Y.; Chen, Z-G.; Liu,T.; Yang, G.;Hou, S.;Zhu, C-F.; Liu, J.-X.; Qiao,F.; Cui, Y.

Tungsten-Iron-Ruthenium Ternary Alloy Immobilized into the Inner Nickel Foam for High-Current-Density Water Oxidation

Small. 202420, 2310829.




69.  Pu,YX.; Liu, J.-X.*.

Theoretical Insights into the Oxygen Reduction Reaction on Au-Based Single-Atom Alloy Cluster Catalysts.

Chinese J. Chem. Phys. 2024 , 37 (5), 573-581.




    68. Li, S.; Feng, L.; Wang, H-W.*; Lin, Y.; Sun, Z-H.; Xu, L- L.; Xu, Y-X.Liu, X-Y.; Li, W-X.; Wei, S-     Q.;  Liu,J.-X.*; Lu,J-L.*.

Atomically-intimate assembly of dual metal-oxide interfaces for tandem conversion of syngas to ethanol

Nat. Nanotechnol. 2024, 20, 255-264.




67.Pu, Y-X.; Chen, J-L.; Feng, L.; Zhu, J-Z.;  Jiang, X-C.;  Li, W-X.;Liu, J.-X.*.

Nature of the Active Center for the Oxygen Reduction Reaction on Ag-Based Single-Atom Alloy Cluster.

JACS Au. 20244, 2886-2895.




66. Yuan, C-Y.;Feng, L.; Qin, X-T.; Liu, J.-X.*;  Li, X.; Sun, X-C.; Chang, X-X.; Xu,B-J.; Li, W-X.;  Ma, D.; Dong, H.;  Zhang, Y-W.*.

 Constructing Metal(II)-Sulfate Site Catalysts toward Low Overpotential Carbon Dioxide Electroreduction to Fuel Chemicals.

Angew. Chem. Int. Ed. 2024, e202405255. 




65. Song, C.; Wang, Z.; Zhao, J.; Qin, X.; Peng, M.; Gao, Z.; Xu, M.; Xu, Y.; Yan, J.; Bi, Y.; Wang, M.; Chen, L.; Yin, Z.; Liu, X.*; Liu, J.-X.*; Ma, D.*. 

Photothermal conversion of CO2 into lower olefins at the interface of the K-promoted Ru/Fe3O4 catalyst. 

Chem Catalysis. 2024, 4 (4), 100960.




64. Shu, W.; Li, J.; Liu, J.-X.; Zhu, C.; Wang, T.; Feng, L.; Ouyang, R.; Li, W.-X.*.

Structure Sensitivity of Metal Catalysts Revealed by Interpretable Machine Learning and First-Principles Calculations. 

J. Am. Chem. Soc. 2024, 146 (12), 8737-8745. 




63.  Chen, C.; Chen, J.-L.; Feng, L.; Hu, J.; Chai, X.; Liu, J.-X.*; Li, W.-X.* 

Reactant-Induced Dynamic Stabilization of Highly Dispersed Pt Catalysts on Ceria Dictating the Reactivity of CO Oxidation. 

ACS Catal. 2024, 14, 3504-3513. 




62. Qin, X.; Xu, M.; Guan, J.; Feng, L.; Xu, Y.; Zheng, L.; Wang, M.; Zhao, J.-W.; Chen, J.-L.; Zhang, J.; Xie, J.; Yu, Z.; Zhang, R.; Li, X.; Liu, X.*; Liu, J.-X.*Zheng, J.*; Ma, D.* .

Direct conversion of CO and H2O to hydrocarbons at atmospheric pressure using a TiO2−x/Ni photothermal catalyst. 

Nature Energy. 2024, 9 (2), 154-162. 




61. Zhao, J.-W.; Wang, H.-Y.; Feng, L.; Zhu, J.-Z.; Liu, J.-X.*; Li, W.-X.* 

Crystal-Phase Engineering in Heterogeneous Catalysis. 

Chemical Reviews. 2024, 124 (1), 164-209.




2023

60. Zhang, X.; Li, M.; Liu, X.; Li, A.; Deng, Y.; Peng, M.; Zhang, Y.; Vogt, C.; Monai, M.; Gao, J.; Qin, X.; Xu, Y.; Yu, Q.; Wang, M.; Wang, G.; Jiang, Z.; Han, X.; Brady, C.; Li, W.-X.; Zhou, W.; Liu, J.-X.*; Xu, B.; Weckhuysen, B.M.; Ma, D. 

An Integrated Carbon Dioxide Capture and Methanation Process. 

CCS Chem. 2023,  0 (0), 1-10.




59. Peng, G.; Zhao, J.-W.; Wang, J.; Hoenig, E.; Wu, S.; Wang, M.; He, M.; Zhang, L.; Liu, J.-X.*; Liu, C.*.

Crystal Structures of Molybdenum Borides Dictate Electrocatalytic Ammonia Synthesis Efficiency. 

Appl. Catal., B. 2023, 338, 123020.




58. Hu, L.; Zhu, J.; Duan, C.; Zhu, J.; Wang, J.; Wang, K.; Gu, Z.; Xi, Z.; Hao, J.; Chen, Y.; Ma, J.; Liu, J.-X.*; Ma, C.*.

Revealing the Pnma crystal structure and ion-transport mechanism of the Li3YCl6 solid electrolyte.

Cell Rep. Phys. Sci. 2023, 4 (6), 101428.




57. Liu, J.-X.#; Lu, S.; Ann, S.-B.; Linic, S.*.

 Mechanisms of Ethylene Epoxidation over Silver from Machine Learning-Accelerated First-Principles Modeling and Microkinetic Simulations. 

ACS Catal. 2023, 13, 8955-8962.




56. Kimpel, T. F.; Liu, J.-X.; Chen, W. 

Pestman, R.; Hensen, E. J. M., Pressure Dependence and Mechanism of Mn Promotion of Silica-Supported Co Catalyst in the Fischer-Tropsch Reaction. 

J. Catal. 2023, 425, 181-195. 



2022

55. Xu, M.; Qin, X.; Xu, Y.; Zhang, X.; Zheng, L.; Liu, J.-X.*; Wang, M.*; Liu, X.*; Ma, D.* .

Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2-x/Ni catalysts. 

Nat Commun. 2022, 13 (1), 6720.





54.  Luo, J.; Liu, J.-X.; Li, W.-X.*.

H2 Activation on Pristine and Substitutional ZnO(10-10) and Cr2O3(001) Surfaces by Density Functional Theory Calculations.

J. Phys. Chem. C. 2022126, 9059-9068. 




53. Chen, C.; Jian, M.-Z.;Liu, J.-X.*; Li, W.-X.*.

Understanding the effect of the exchange-correlation functionals on methane and ethane formation over ruthenium catalysts. 

Chin. J. Chem. Phys. 2022, 35, 4.




2021

52. Zhao, H.#; Jiang, H.; Cheng, M.; Lin, Q.; lv, Y.; Xu, Y.; Xie, J.; Liu, J.-X.; Men, Z.*; Ma, D.*.

Boron adsorption and its effect on stability and CO activation of χ-Fe5C2 catalyst: An ab initio DFT study.

Appl. Catal. A: Gen. 2021, 607, 118382.




51. Wang J.#; Liu J.*; Zhang B.; Gao J.; Liu G.; Cui X.; Liu J.-X.*; Jiang L.*.

Amine-ligand Modulated Ruthenium Nanoclusters as a Superior Bi-functional Hydrogen Electrocatalyst in Alkaline Media.

J. Mater. Chem. A. 2021, 9, 22934-22942.




50. Jian M.#; Liu J.-X.*; Li  W.-X*. 

Hydroxyl Improving the Activity, Selectivity and Stability of Supported Ni Single Atom for Selective Semi-Hydrogenation.

Chem. Sci. 2021, 12, 10290-10298. 




49. Wang S.#;  Li Z.; Yang M.; Li Y.; Li R.; Yu C.; Wang Y.; Jiang Y.; Li T.; Liu, J.-X.*; Zhang H.*;  Zhao Z.;  Xu C.;  Jiang G.*.

Achieving anti-sintering of supported platinum nanoparticles using a thermal management strategy.

Sci. China Mater. 2021, 64, 1930-1938.




48. Su H.-Y.#; Sun K.*; Liu, J.-X.; Ma X.; Jian M.; Sun C.; Xu Y.; Yin Y.;  Li W.-X*.

Bridge Sulfur Vacancies in MoS2 Catalyst for Reverse Water Gas Shift: A First-Principles Study.

Appl. Surf. Sci. 2021, 561, 149925.




47. Zhang, Y. S.#; Liu, J.-X.#*; Qian, K.; Jia, A.; Li, D.; Shi, L.; Hu, J.; Zhu, J.; Huang, W.*. 

Structure–Sensitivity of Au-TiO2 Strong Metal-Support Interaction.

Angew. Chem. Int. Ed2021335, 135665.




46. Li, S.; Cao, R.; Xu, M.; Deng, Y.; Lin, L.; Yao, S.; Liang, X.; Peng, M.; Gao, Z.; Ge, Y.; Liu, J.-X.*; Li, W.-X.; Zhou, W.*; Ma, D.*. 

Atomically Dispersed Ir/Α-MoC Catalyst with High Metal Loading and Thermal Stability for Water-Promoted Hydrogenation Reaction.

Natl. Sci. Rev. 2021, 9 (1), nwab026.




2020

45.Lin, H.#; Liu, J.-X.#; Fan, H.*; Li, W.-X.*. 

Crystallographic and Morphological Sensitivity of N2 Activation over Ruthenium. 

Chin. J. Chem. Phys.2020, 34, 263-272.



44.Zhao, H.#; Liu, J.-X.#; Yang, C.#; Yao, S.; Su, H.-Y.; Gao, Z.; Dong, M.; Wang, J.; Hou, Y.*; Li, W.-X.*, Ma, D.*. 

Synthesis of Iron-Carbide Nanoparticles: Identification of the Active Phase and Mechanism of Fe-Based Fischer-Tropsch Synthesis.

CCS Chem. 2020, 2, 2712-2724.



43.Su, H.-Y.; Yu, C.; Liu, J.-X.; Zhao, Y.; Ma, X.; Luo, J.; Sun, C.; Li, W.-X.*; Sun, K.*. 

CO Activation and Methanation Mechanism on Hexagonal Close-Packed Co Catalysts: Effect of Functionals, Carbon Deposition and Surface Structure. 

Catal. Sci. Technol. 2020, 10, 3387-3398.




42.Lin, H.#; Liu, J.-X.#; Fan, H.-J.*; Li, W.-X.*. 

Morphology Evolution of Fcc and Hcp Cobalt Induced by a Co Atmosphere from Ab Initio Thermodynamics.

J. Phys. Chem. C. 2020, 124, 23200-23209.




41.Lin, H.#; Liu, J.-X.#; Fan, H.*; Li, W.-X.*.

Compensation between Surface Energy and Hcp/Fcc Phase Energy of Late Transition Metals from First-Principles Calculations.

J. Phys. Chem. C. 2020, 124, 11005-11014.




40.Su, Y.-Q.; Zhang, L.; Wang, Y.; Liu, J.-X.; Muravev, V.; Alexopoulos, K.; Filot, I. A.; Vlachos, D. G.*; Hensen, E. J.*.

Stability of Heterogeneous Single-Atom Catalysts: A Scaling Law Mapping Thermodynamics to Kinetics. 

NPJ Comput. Mater. 2020, 6, 1-7.




39.Zijlstra, B.#; Zhang, X.#; Liu, J.-X.#; Filot, I. A. W.; Zhou, Z.; Sun, S.; Hensen, E. J. M.*.

First-Principles Microkinetics Simulations of Electrochemical Reduction of COover Cu Catalysts. 

Electrochim. Acta. 2020, 335, 135665.




38.Lin, H.#; Liu, J.-X.#; Fan, H.*; Li, W.-X.*.

Compensation between Surface Energy and hcp/fcc Phase Energy of Late Transition Metals from First-Principles Calculations. 

J. Phys. Chem. C. 2020, 124, 11005-11014.